
ilifu Online Training – Advanced #2
Dr Jordan Collier

ilifu Support Astronomer, IDIA, Department of Astronomy, University of Cape Town
Adjunct Fellow, Western Sydney University

• http://docs.ilifu.ac.za/#/getting_started/submit_job_slurm

• Login node (job submission & management)
– Where you land when you log in (also known as “head node”)
– Run SLURM commands/submit jobs, but not software/heavy processes

• Compute nodes
– Where your processes run (also known as “worker nodes”)
– Via Singularity containers

SLURM

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

Login node

Partition 1 Partition 2

compute
-001 …

compute
-002

compute
-003

compute
-004

jupyter-
101 …

jupyter-
102

jupyter-
103

jupyter-
104

1 node = 32 CPUs,
232 GB RAM

Main
Partition
~80 nodes

slurm-login node

Jupyter
Spawner
Partition
16 nodes

http://docs.ilifu.ac.za/

Login node

Main HighMem

compute
-001 …

compute
-002

compute
-003

compute
-004

highmem
-101

highmem
-102

GPU

gpu-001 gpu-002

• http://docs.ilifu.ac.za/#/tech_docs/running_jobs?id=_4-
specifying-resources-when-running-jobs-on-slurm

• Partitions (other than Jupyter) – see with ‘sinfo’:
– Main: 86 nodes (currently), each w/ 32 CPUs, 232 GB (usable) RAM
– HighMem: 2 nodes, each w/ 32 CPUs, 480 GB (usable) RAM
– GPU: 5 nodes, each w/ 2 GPUs, 32 CPUs, 232 GB (usable) RAM

SLURM

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

…

http://docs.ilifu.ac.za/

• Oxford definition for parallel processing
– a mode of operation in which a process is split into parts, which are

executed simultaneously on different processors attached to the same
computer [or different computers attached to the same cluster].

– A cluster includes many connected nodes, each with its own RAM & CPUs
– A node = single computer / server / VM / machine / box

• The work is partitioned into smaller jobs, sometimes with a
partition of the dataset

Parallelism

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Set of discrete instructions

• Carried out sequentially

• Example: print average grade of a class

1. total = 0

2. for grade in grades:
total = total + grade

3. average = total / number_of_grades

4. print(average)

What is a program?

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Executing portions of program simultaneously

• Possible when we have many processors (cores/CPUs)

• Capacity dependent on structure of both hardware AND
software

• Requires overall control/coordination mechanism
– i.e. message passing

Parallelism

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• A cluster includes many connected nodes

• Each node has RAM and multiple cores

• Work of job is partitioned into smaller jobs

• Sometimes with a partition of the data

Parallelism on the cluster

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Partition grades into 2:

• Combine results

Parallel execution of a program

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

1. total = 0
2. for grade in 1/2 grades:

total = total + grade

3. average1 = total / number_of_grades

1. total = 0
2. for grade in 1/2 grades:

total = total + grade

3. average2 = total / number_of_grades

average = (average1 + average2) / number_of_partitions

• Can be achieved on a single machine / node
– Distributes work over many CPUs
– Typically implemented using OpenMP

• Or over multiple machines / nodes
– Distributes work over many tasks, over 1+ nodes
– Each given amount of memory to use
– Generally requires a cluster
– Typically implemented using OpenMPI
– Requires a message passing interface (MPI) wrapper

• mpirun, aprun, srun (SLURM), mpicasa (CASA 5)
• Version of wrapper outside and inside container / venv must match

• Managed on ilifu by SLURM

Parallelism

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Implementing a normal job in SLURM
– Will only use 1 CPU, 1 task, and 1 node
– Default for many processes

• Implementing an OpenMP job in SLURM
– Need to use >1 CPU, while nodes & tasks must be 1 (unless also using

MPI)
• cpus-per-task
• May need to export OMP_NUM_THREADS

• Implementing an MPI job in SLURM
– Need to use >1 task, while nodes and CPUs can be 1

• nodes, ntasks-per-node, cpus-per-task
• Need to wrap singularity in MPI call

• Cannot exceed 32 CPUs (or tasks) per node

Parallelism

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• If code is serial, i.e. doesn’t use OpenMP or MPI, increasing
CPUs or nodes will not decrease execution time

• Using multiple CPUs within a node with OpenMP, where N is
an optional number of CPUs (utilised by myscript.py)

• Note: The maximum number of CPUs per node (32) will not
always give the maximum speedup

SLURM – serial and multi-CPU jobs

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=1
singularity exec /path/to/container.simg python myscript.py

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=N

#SBATCH --mem-per-cpu=XGB
singularity exec /path/to/container.simg python myscript.py

• Can also specify tasks or tasks per node

• Above example doesn’t require knowledge of number of
node’s CPUs; below one does

SLURM – multi-task and multi-node jobs

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

#SBATCH --nodes=1
#SBATCH --ntasks-per-node=N

#SBATCH --cpus-per-task=1
#SBATCH --mem=XGB
/path/to/mpirun singularity exec /path/to/container.simg python myscript.py

#SBATCH --ntasks=N
#SBATCH --cpus-per-task=1
#SBATCH --mem=XGB

/path/to/mpirun singularity exec /path/to/container.simg python myscript.py

• Using multiple nodes with MPI

• Note: Need to consider that internode communication is
slower than intranode communication

• --mem is memory per node, so N times XGB allocated overall
(usable by some software)

• Using multiple nodes with MPI as well as multiple cores within
node with OpenMP (utilised by myscript.py)

SLURM – multi-task and multi-CPU jobs

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

#SBATCH --nodes=N
#SBATCH --ntasks-per-node=n
#SBATCH --cpus-per-task=1

#SBATCH --mem=XGB
/path/to/mpirun singularity exec /path/to/container.simg python myscript.py

#SBATCH --ntasks=N
#SBATCH --cpus-per-task=n

/path/to/mpirun singularity exec /path/to/container.simg python myscript.py

• Allows jobs to be scheduled for running, based on the status
of a previous job
– e.g. only begin a particular job once previous one successfully completes

$ sbatch -d afterok:882242 --kill-on-invalid-dep=yes another_job.sh
#submit another_job.sh to SLURM queue, to begin after jobID 882242
successfully completes (exit code 0), or cancel the job if jobID 882242 fails

$ sbatch -d afterany:882242:882243 another_job.sh
#submit another_job.sh to SLURM queue, to begin after jobIDs 882242 & 882243
complete (any exit code)

SLURM – dependencies

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Parallelised package for HPC processing (SLURM + cluster)

• HPC-friendly – dynamically uses resources & submits to
queue to give calibrated data with the push of a button

• Each job/script is a logical step that does / doesn’t use MPI,
and optionally uses a different container
– Managed by wrapper software sourced by user so that it’s in their path
– This could also be venv and is updated more regularly
– Design: wrapper software manages the jobs you submit to SLURM

• User can insert their scripts at start, middle or end
– Design: jobs run within containers that include software dependencies

• https://idia-pipelines.github.io/docs/processMeerKAT

• Demo time!

IDIA MeerKAT Pipeline – A Good Framework

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

https://idia-pipelines.github.io/docs/processMeerKAT

• ilifu
1. Supports a diverse range of projects
– Astronomy and Bioinformatics
– Varying resource requirements

2. Shared environment
3. Resource-limited

• Efficient use of resources essential
– Practices laid out in allocation guide
– Additional:
– Select lowest Jupyter resource possible
– Shut down Jupyter server after use
– Use sbatch with non-default parameters

ilifu: a shared resource-limited cluster

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

http://docs.ilifu.ac.za/

• http://docs.ilifu.ac.za/#/getting_started/access_ilifu

Services and partitions

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

Run SLURM & bash commands
cd, mkdir, ls, etc

Login node Jupyter/Dev. node
Development space

 New code / workflows / routines
 Debugging / testing software

Main partition
Stable, computationally
heavy processing

HighMem/GPU

For single-high memory
jobs or GPU resources

http://docs.ilifu.ac.za/

• Login node
– Where you land when logging in on ilifu Slurm cluster (slurm.ilifu.ac.za)
– For running basic bash commands (cd, mkdir, ls, etc)
– For running Slurm commands (srun, sbatch, scancel, squeue, sacct, etc)

Services and partitions

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Jupyter (Jupyter.ilifu.ac.za)
– Development space for writing,

testing and debugging
– New code, software, workflows

or routines
– Highly interactive Jupyter

notebook environment
– tab-completion, viewing doc

strings, running subroutines
within cells

– May be primary interface for
stable workflows that shouldn’t
use Slurm
– short analysis routines or other

highly interactive workflows

Services and partitions

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

http://docs.ilifu.ac.za/
Jupyter.ilifu.ac.za

• Devel (--partition=Devel)
– Development of routines within shared resource environment
– Submit jobs instantly / quickly
– Resources shared, not solely allocated to your jobs

– Interactivity via a shell
– Generally for testing higher level workflows and pipelines
– Access simply using the sinteractive command

Services and partitions

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

http://docs.ilifu.ac.za/

• Main partition
– Default Slurm partition
– Generally for stable, computationally-heavy workflows and pipelines
– Many small jobs allocated few resources or
– A few large jobs allocated many resources

– Have first been tested on one of the previous services (where applicable)

Services and partitions

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• HighMem partition
– Single high-memory jobs that can’t be split into multiple jobs using MPI

• GPU partition
– Jobs making use of GPUs
– Not for jobs that only require CPUs (rather use Devel)

Services and partitions

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Transfer node (transfer.ilifu.ac.za)
– Internal and external copying of data (cp, scp, rsync, etc)
– Smaller or less frequent transfers (i.e. not requiring Globus)
– Other basic bash commands inappropriate for login node (wget, rm)
– Also possible on Slurm compute node (e.g. 1 CPU, 1 GB RAM)

Services and partitions

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

http://docs.ilifu.ac.za/

• http://docs.ilifu.ac.za/#/tech_docs
/resource_allocation

• Primary resources
1. CPU
2. Memory
3. Wall-time

• Notes
– Nodes have 2 CPUs (sockets), each with

16 cores, all of which Slurm calls “CPUs”
– Wall-time (elapsed time) is total run-time

of job according to a clock on the wall
– When > 1 CPU, differs from CPU time,

measured in CPU hours

Allocating Resources

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

http://docs.ilifu.ac.za/

• How to allocate resources
– Accurately determine your resource requirements
– Use what you require

• Effect
– Avoid wasting resources (allocated but not used)
– Increase resource availability
– Allow other (users’) jobs to run
– Improves efficiency of Slurm scheduler
– Increase your fairshare priority
– Potentially decrease your job wait times

Allocating Resources

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

http://docs.ilifu.ac.za/

• Determine your resource requirements
1. Determining parallelism of software
2. Profiling previous similar jobs
3. Scaling up test jobs

Allocating Resources

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Determining parallelism of software
– See previous slides
– CPU-level vs. task-level parallelism
– Many software packages only use 1 CPU

Allocating Resources

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

http://docs.ilifu.ac.za/

• Determining parallelism of
software
– Most parallel processing software

doesn’t scale linearly
– Maximum performance often

least efficient
– i.e. shortest wall-time but large

allocation necessary
– Need to find middle ground
– MPI jobs may perform worse for

larger allocations (scatter/gather)
– Most efficient generally to break

into many small independent jobs
– High-throughput approach

Allocating Resources

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Find job ID
– Output when job submitted
– Can search for historical jobs
– Display jobs named ‘my-job’ submitted during particular time range:
– sacct -X --name=my-job --starttime=YYYY-MM-DD --endtime=YYYY-MM-DD

– Omit job name (or end time) to show all jobs
– Add following to query (very) old Slurm databases (before upgrades)
– --cluster=ilifu-slurm20 or --cluster=ilifu-slurm

• Once you have job ID, you can search for specific information about
resource usage

Profiling previous similar jobs

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Memory usage
– Find MaxRSS statistic
– Maximum memory usage of a job (sampled every 20 seconds)
– Display MaxRSS for job ID 123456 compared to requested memory
– sacct -j 123456 --unit=G -o JobID,JobName,MaxRSS,ReqMem

– Can run this from Jupyter terminal (to determine resource selection)
– Notes: 232 Gn = 232 GB per node; 7.25c = 7.25 GB per CPU

– Once memory requirement determined
– Schedule future jobs with ~10-20% buffer

• Avoids out-of-memory (OOM) error
– Avoid excessive usage of memory

• e.g. minimum node in Jupyter

Profiling previous similar jobs

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Select job profile to match your
requirements (avoid excess)

• Jupyter shows you maximum
memory usage down the
bottom of your session

• We will email you usage stats
after a job has completed that
selected a high job profile and
used very low CPU & memory

• Shut down your session

An aside for Jupyter

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• CPU (and memory) usage
– Determine used vs. allocated/requested
– Show Slurm resource efficiency (seff) for job ID 123456
– Shows % used vs. allocated (for memory, uses MaxRSS stat)
– seff 123456
– Can run this from Jupyter terminal (to determine resource selection)

Profiling previous similar jobs

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Wall-time usage
– Accurate estimation improves Slurm scheduler efficiency and

may reduce your job wait time
– Show used vs. requested wall-time for job ID 123456 (also in Jupyter)
– sacct -o jobID,jobName,Elapsed,TimeLimit
– Once wall-time requirement determined
– Schedule future jobs with ~20-30% buffer (avoids job timing out)
– Avoid excessive wall-time
– Contact support@ilifu.ac.za to see if we may increase your time limit

Profiling previous similar jobs

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

mailto:support@ilifu.ac.za

• Accurately estimating wall-time difficult to do

• Profile previous similar jobs, or

• Run test / scaling jobs
– Start small test job (e.g. small allocation on small subset of data)
– Test the wall-time, run again with increased resources
– Reasonable to over-allocate when running scaling test

• Briefly inefficient, until get an idea of requirements
– Or if under-estimate, and test small enough, doesn’t matter if crashes

– Repeat process to see how resource usage scales
– as a function of input (e.g. data volume)
– as a function of CPUs / tasks (if doing parallel processing)

– By the end, should have good idea of scaling and efficient choice
– Allow for buffer for future jobs

Scaling tests

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• e.g. during scaling tests

• Get MaxRSS for running job
– sstat -j 123456 -o MaxRSS
– Given in kB units. Divide by 1024² for GB

• Display real time stats on dashboard (top / htop)
– ssh compute-001 or open Jupyter terminal
– Requires job running on node and authentication forwarding
– e.g. first run ssh -A <username>@slurm.ilifu.ac.za

– htop -u $USER

• Shows different (e.g. master and spawned) running processes

• Can monitor real-time usage

Usage of running jobs

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• If using all CPUs or memory, node becomes fully allocated
– Any remaining CPUs / memory unavailable to other jobs (incl. your own)
– Consider leaving headroom when can’t use all CPUs or memory

• Note: Jobs on Devel node cannot allocate memory

Maximum Resources

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

Partition Node
names

Default
CPUs

Max
CPUs

Default
Memory

(GB)

Max
Memory

(GB)

Default
wall-time

Max wall-
time

Main compute-
[001-080]

1 32 7.25 232 3 hours 14 days

Main compute-
[101-105]

1 48 7.25 232 3 hours 14 days

HighMem highmem-
[001-002]

1 32 15 480 3 hours 14 days

Devel compute-
060

1 32 - - 3 hours 12 hours

• Each ilifu project has a Slurm account

• Resource usage charged against account (affects fairshare)

• View your accounts
– sacctmgr show user $USER cluster=
ilifu-slurm2021 -s format=account%25

• View your default account
– sacctmgr show user $USER

• Change default
– sacctmgr modify user name=${USER}
set DefaultAccount=<account>

• Set account (after #SBATCH for sbatch jobs)
– --account=b05-pipelines-ag

Account allocation

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

http://docs.ilifu.ac.za/
http://docs.ilifu.ac.za/

• Demo

Resource Allocation Guide

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

• Hot off the press!

• https://docs.ilifu.ac.za/#/data/data_management

Data Management Guidelines

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

https://docs.ilifu.ac.za/

• Don’t run software / heavy processes / scp on the login node
– Only submit jobs and run SLURM commands (sbatch, srun, squeue, etc)
– Use transfer.ilifu.ac.za to transfer data (external/internal), not login node

• Before running a large job, identify the available resources
– Use sinfo. Don’t hog the cluster. Reduce your allocation if possible
– Increase likelihood of jobs running with less memory and less walltime

• Use sbatch (srun / screen / tmux / mosh are volatile)

• Cleanup files that aren’t needed
– Old raw data, temporary products, /scratch data, etc

• Don’t place large files in your home directory (/users)

• Use Singularity (you cannot install software on the nodes)

Best practices

Jordan Collier | 27 Sep 2022 | ilifu Advanced Training

THANK YOU

Dr Jordan Collier

ilifu Support Astronomer, IDIA
Department of Astronomy,
University of Cape Town

Adjunct Fellow, School of Science,
Western Sydney University

Jordan@idia.ac.za

