
ilifu Online Training – Advanced #2 - Resource Allocation
Tinus Cloete

System Administrator & User Support, ilifu
University of Western Cape, March 2024

1. Supports a diverse range of projects
– Astronomy and Bioinformatics
– Varying resource requirements

e.g.
CPU's, Memory,
Running Time, GPU's etc.

2. Shared environment
3. Resource-limited

ilifu: a shared resource-limited cluster

– Resource Allocation: "Picking the right amount of resources for
your jobs"

e.g.
if a job uses 100 GB of RAM, don't want to request 232 GB

– Best practices: Resource Allocation Guide

Efficient Usage of Resources

132 GB100 GB

http://docs.ilifu.ac.za/#/tech_docs/resource_allocation

Services and Partitions

Run SLURM & bash commands
cd, mkdir, ls, etc

Login node Jupyter/Dev. node

Development space
 New code / workflows / routines

 Debugging / testing software

Main partition
Stable, computationally
heavy processing

HighMem/GPU

For single-high memory jobs
or GPU resources

● Jupyter (Jupyter.ilifu.ac.za)
– Development space for writing,

testing and debugging
– New code, software, workflows

or routines
– Highly interactive Jupyter

notebook environment
– May be primary interface for

stable workflows that shouldn’t
use Slurm
➢ short analysis routines or

other highly interactive
workflows

Services and Partitions: Jupyter

http://docs.ilifu.ac.za/#/tech_docs/running_jobs?id=jupyter-spawner
http://jupyter.ilifu.ac.za

• Select job profile to match your
requirements

• Memory often most important
• Jupyter shows current

memory usage at the bottom
• Emailed about usage stats

e.g. low memory usage
• Shut down your session

Jupyter: Resource Allocation

• Devel (--partition=Devel)
– Development of routines within shared resource environment
➢ Submit jobs instantly / quickly
➢ Resources shared, not solely allocated to your jobs

– Interactivity via a shell
– Generally for testing higher level workflows and pipelines
– Access simply using the sinteractive command

Services and partitions: Devel

http://docs.ilifu.ac.za/#/getting_started/submit_job_slurm?id=interactive-slurm-sessions

• Main partition
– Default Slurm partition
– Generally for stable, computationally-heavy workflows and pipelines
– Can be used for:

– Many small jobs OR
– A few large jobs allocated many resources

– For large workflows, better to first test on Devel or Jupyter

Services and partitions: Main

• HighMem partition
– Single high-memory jobs that can’t be split into multiple jobs using MPI

• GPU partition
– Jobs making use of GPUs
– Not for jobs that only require CPUs (rather use Devel)

Services and partitions: GPU and HighMem

• http://docs.ilifu.ac.za/#/tech_docs/r
esource_allocation

• Primary resources
1. CPU
2. Memory
3. Wall-time

• Notes
– Nodes have 2 CPUs (sockets), each

with 16 cores, all of which Slurm calls
“CPUs”

Primary Resources

http://docs.ilifu.ac.za/#/tech_docs/resource_allocation
http://docs.ilifu.ac.za/#/tech_docs/resource_allocation

• How to allocate resources
– Accurately determine your resource requirements
– Use what you require

• Effect
– Avoid wasting resources (allocated but not used)
– Increase resource availability
– Allow other users’ jobs to run
– Improves efficiency of Slurm scheduler
– Decreased job wait times
– Better fairshare priority for future job submissions.

Allocating Resources

http://docs.ilifu.ac.za/#/tech_docs/fairshare

1. Determine parallelism of software
2. Profiling previous similar jobs
3. Scaling up test jobs

Determining resource requirements

• Determining parallelism of software
– Many software packages only use 1 CPU
– CPU-level parallelism: Max 1 Node of CPUs
– Task-level parallelism: >= 1 Node

Determining resource requirements

http://docs.ilifu.ac.za/#/tech_docs/running_jobs?id=parallel-computing-on-the-cluster

• Determining parallelism of
software

– Most parallel processing
software doesn’t scale linearly

– Maximum performance often
least efficient
– i.e. shortest wall-time but

large allocation necessary
– Need to find middle ground
– MPI jobs may perform worse for

larger allocations
(scatter/gather)

– Most efficient generally to break
into many small independent
jobs
– High-throughput approach

Determining resource requirements

• Find job ID
– Job id is shown when you submitted your job
– Can search for historical jobs
– Display jobs named ‘my-job’ submitted during particular time range:
– sacct -X --name=my-job --starttime=YYYY-MM-DD --endtime=YYYY-MM-DD

– Omit job name (or end time) to show all jobs

• Once you have job ID, you can search for specific
information about resource usage

Profiling previous similar jobs

• Memory usage
– Find MaxRSS statistic

– Maximum memory usage of a job (sampled every 20 seconds)
– Display MaxRSS for job ID 123456 compared to requested memory
– sacct -j 123456 --unit=G -o JobID,JobName,MaxRSS,ReqMem

– Notes: 232 Gn = 232 GB per node; 7.25c = 7.25 GB per CPU

– Once memory requirement determined
– Schedule future jobs with ~10-20% buffer

• Avoids out-of-memory (OOM) error
– Avoid excessive usage of memory

Profiling previous similar jobs

• CPU (and memory) usage
– Determine used vs. allocated/requested
– Show Slurm resource efficiency (seff) for job ID 123456
– Shows % used vs. allocated (for memory, uses MaxRSS stat)
– seff 123456
– Can run this from Jupyter terminal (to determine resource selection)

Profiling previous similar jobs

• Wall-time usage
– Accurate estimation improves Slurm scheduler efficiency and

may reduce your job wait time
– Show used vs. requested wall-time for job ID 123456
– sacct -o jobID,jobName,Elapsed,TimeLimit
– Once wall-time requirement determined

– Schedule future jobs with ~20-30% buffer (avoids job timing out)
– Avoid excessive wall-time
– Contact support@ilifu.ac.za to see if we may increase your time limit

Profiling previous similar jobs

mailto:support@ilifu.ac.za

• Accurately estimating wall-time difficult to do
• Profile previous similar jobs, or
• Run test / scaling jobs

– Start small test job (e.g. small subset of data)
– Test the wall-time

– Reasonable to over-allocate when running scaling test
– Or if under-estimate, and test small enough, doesn’t matter if

crashes
– Repeat process to see how resource usage scales

– as a function of input (e.g. data volume)
– as a function of CPUs / tasks (if doing parallel processing)

– By the end, should have good idea of scaling and efficient choice
– Allow for buffer for future jobs

Scaling tests

• Get MaxRSS for running job
– sstat -j 123456 -o MaxRSS
– Given in kB units. Divide by 1024² for GB

• Display real time stats on dashboard (top / htop)
– For sbatch:

First ssh into the login node using authentication forwarding.
ssh -A <username>@slurm.ilifu.ac.za

It's required to have a job running on a worker node.
You can then ssh into that worker node (e.g. node 102)
ssh compute-102

– For Jupyter: can simply open a new terminal.
– Now Run: htop -u $USER

• Can monitor real-time usage

Scaling tests on running jobs

• If using all CPUs or memory, node becomes fully allocated
– Any remaining CPUs / memory unavailable to other jobs (incl. your

own)

E.g.
Typical worker node: 32 CPU and 232 GB RAM

Job Requesting: 2 CPU and 232 GB RAM == Full Node
 30 CPU not accessible to other jobs

If possible to split into two smaller jobs, if they ran on different nodes then:

 1 CPU and 116 GB 1 CPU and 116 GB
 31 CPUs accessible 31 CPUs accessible

Maximum Resources

• Each ilifu project has a Slurm account
• Resource usage charged against account (affects fairshare)
• View your accounts:

– shelp

• View your default account
– sacctmgr show user $USER

• Change default
– sacctmgr modify user name=${USER}
set DefaultAccount=<account>

• Set account (after #SBATCH for sbatch jobs)
– --account=b05-pipelines-ag

Account allocation

http://docs.ilifu.ac.za/#/tech_docs/resource_allocation?id=account-allocation
http://docs.ilifu.ac.za/#/tech_docs/fairshare

Resource Allocation Guide

DEMO TIME!

• Hot off the press!
• https://docs.ilifu.ac.za/#/data/data_management

Data Management Guidelines

https://docs.ilifu.ac.za/#/data/data_management

• Don’t run software / heavy processes / scp on the login
node

– Only submit jobs and run SLURM commands (sbatch, srun, squeue,
etc)

– Use transfer.ilifu.ac.za to transfer data (external/internal), not login
node

• Before running a large job, identify the available resources
– Use sinfo. Don’t hog the cluster. Reduce your allocation if possible
– Increase likelihood of jobs running with less memory and less walltime

• Use sbatch (srun / screen / tmux / mosh are volatile)
• Cleanup files that aren’t needed

– Old raw data, temporary products, /scratch data, etc

• Don’t place large files in your home directory (/users)
• Use Singularity (you cannot install software on the nodes)

Best practices

Thank you!
Thanks to Jordan Collier for letting me use his Slides

26

Remember our support channels!

support@ilifu.ac.za
https://docs.ilifu.ac.za

mailto:support@ilifu.ac.za

