ilifu Online Training – Advanced #2 - Resource Allocation

Tinus Cloete

System Administrator & User Support, ilifu University of Western Cape, March 2024

Inter-University Institute for Data Intensive Astronomy

UNIVERSITY of the WESTERN CAPE

ilifu: a shared resource-limited cluster

- 1. Supports a diverse range of projects
 - Astronomy and Bioinformatics
 - Varying resource requirements

e.g. CPU's, Memory, Running Time, GPU's etc.

- 2. Shared environment
- 3. Resource-limited

Efficient Usage of Resources

Resource Allocation: "Picking the right amount of resources for your jobs"

e.g. if a job uses 100 GB of RAM, don't want to request 232 GB

100 GB	132 GB
--------	--------

Best practices: <u>Resource Allocation Guide</u>

Services and Partitions

Jupyter/Dev. node

Development space New code / workflows / routines Debugging / testing software

Main partition

Stable, computationally heavy processing

HighMem/GPU

For single-high memory jobs or GPU resources

000

Services and Partitions: Jupyter

• Jupyter (Jupyter.ilifu.ac.za)

- Development space for writing, testing and debugging
- New code, software, workflows or routines
- Highly interactive Jupyter notebook environment
- May be primary interface for stable workflows that shouldn't use Slurm
 - short analysis routines or other highly interactive workflows

JupyterHub × +	~
→ C ① D jupyter.ilifu.ac.za/hub/spawn	û 🖈 🤩 📽 😑 🕷 🔒
ifu Home Token Admin	jcollier 🔄 Logout
Launch	lupyter Lab
Hi ignilier. Remember to try and choose the an	rallest profile that fits your task. This halps us to
make sure that everyone has access to the res	sources they need. Please visit the user
documentation to learn more about Jupyter or an email to liftu support	n ilifu. If you have any more questions, please send
Salact a job profile:	
Minimum Node 1 core 7 CP 19 hours idl	a timoauti may 5 daya lifeanan
Wininitian Node - 1 core, 7 cib, 10 hours lan	
	Start
0	Ontions
Serve	rOptions
as of 20	223-04-18 09:40
Job Prof	ile Available Jobs
Minimum (1 co	re) 150
Small (2 con	es) 74
Medium (4 con	es) 37
Large (8 con	es) 18
Half-Max (16 con	es) o

Jupyter: Resource Allocation

43

- Select job profile to match your requirements
- Memory often most important
- Jupyter shows current memory usage at the bottom

\$_

10

▣

- Emailed about usage stats e.g. low memory usage
- Shut down your session

visstat.ipynb

Simple

your	← → C ☆ ■ jupyter.ilifu.ac.za/hub/spawn ☆ ☆ ◎ ☞ ● ★ Ξ ★ □
	ilifu Home Token Admin jcollier & Logout
	Launch Jupyter Lab
ant	Hi jcoilier. Remember to try and choose the smallest profile that fits your task. This helps us to make sure that everyone has access to the resources they need. Please visit the user documentation to learn more about Jupyter on liftu. If you have any more questions, please send an email to lift support.
	Select a job profile:
	Minimum Node - 1 core, 7 GB, 18 hours idle timeout, max 5 days lifespan 🗸
	Start
om	Server Options
	as of 2023-04-18 09:40
	Job Profile Available Jobs
	Minimum (1 core) 150
	Small (2 cores) 74
	Medium (4 cores) 37
	Large (8 cores) 18
	Half-Max (16 cores) 8 Max (32 cores) 4
	✓ Minimum Node - 1 core, 7 GB, 18 hours idle timeout, max 5 days lifespan
	Small Node - 2 core, 14 GB, 18 hours idle timeout, max 5 days lifespan
	Medium Node - 4 core, 28 GB, 18 hours idle timeout, max 5 days lifespan
	Large Node - 8 core, 58 GB, 18 hours idle timeout, max 5 days lifespan
	Half-Max Node - 16 core 116 GB 18 hours idle timeout, max 5 days lifespan
	Max Node - 22 cere, 222 CP 19 beure idle timeout, max 5 days mespan
	Max Node - 32 core, 232 GB, 18 nours rale timeout, max 5 days inespan
	GPU Node - NVIDIA P100 GPU, 16 core, 116 GB Memory, max 8 hour lifespan
years ag	go [3]:
ASTRO-	·PY3 (Python 3.8) Idle (Mem: 821.37 MB)
	is of the of Cope to

UNIVERSITY of th

Services and partitions: Devel

- <u>Devel</u> (--partition=Devel)
 - Development of routines within shared resource environment
 - Submit jobs instantly / quickly
 - Resources shared, not solely allocated to your jobs
 - Interactivity via a shell
 - Generally for testing higher level workflows and pipelines
 - Access simply using the sinteractive command

tcloete@slurm-login:~\$ sinteractive
Starting interactive Slurm session.
srun: job 9387238 queued and waiting for resources
srun: job 9387238 has been allocated resources
tcloete@compute-001:~\$

Services and partitions: Main

- Main partition
 - Default Slurm partition
 - Generally for stable, computationally-heavy workflows and pipelines
 - Can be used for:
 - Many small jobs OR
 - A few large jobs allocated many resources
 - For large workflows, better to first test on Devel or Jupyter

					tcloete@compute-001: ~/demo/interactive_script	冗 第1
tcloete@slu	urm-log	in:~\$ sinfo				
PARTITION	AVAIL	TIMELIMIT	NODES	STATE	NODELIST	
Main*	up	14-00:00:0	1	drain*	compute-002	
Main*	up	14-00:00:0	20	mix	compute-[012,021,101-105,201-203,205,216,220-221,225,229-230,233-234,238]	
Main*	up	14-00:00:0	64	alloc	compute-[003-011,013-020,204,206-215,217-219,222-224,226-228,231-232,235-237,2	39
-260]						
Jupyter	up	infinite	5	mix	jupyter-[002-006]	
Jupyter	up	infinite	5	alloc	jupyter-[001,007-010]	
JupyterGPU	up	14-00:00:0	2	alloc	gpu-[003-004]	
HighMem	up	14-00:00:0	3	mix	highmem-[001-003]	
GPU	up	14-00:00:0	1	mix	gpu-007	
GPU	up	14-00:00:0	4	alloc	gpu-[001-004]	
GPU	up	14-00:00:0	2	idle	gpu-[005-006]	
GPUV100	up	14-00:00:0	1	idle	gpu-005	
Devel	up	5-00:00:00	1	mix	compute-001	
tcloete@slu	urm-log	jin:~\$				

Services and partitions: GPU and HighMem

- HighMem partition
 - Single high-memory jobs that can't be split into multiple jobs using MPI
- GPU partition
 - Jobs making use of GPUs
 - Not for jobs that only require CPUs (rather use Devel)

					tcloete@compute-001: ~/demo/interactive_script	:961
tcloete@sl	urm-log	gin:~\$ sinfo				
PARTITION	AVAIL	TIMELIMIT	NODES	STATE	NODELIST	
Main*	up	14-00:00:0	1	drain*	compute-002	
Main*	up	14-00:00:0	20	mix	compute-[012,021,101-105,201-203,205,216,220-221,225,229-230,233-234,238]	
Main*	up	14-00:00:0	64	alloc	compute-[003-011,013-020,204,206-215,217-219,222-224,226-228,231-232,235-237,23	9
-260]						
Jupyter	up	infinite	5	mix	jupyter-[002-006]	
Jupyter	up	infinite	5	alloc	jupyter-[001,007-010]	
JupyterGPU	up	14-00:00:0	2	alloc	gpu-[003-004]	
HighMem	up	14-00:00:0	3	mix	highmem-[001-003]	
GPU	up	14-00:00:0	1	mix	<u>gpu-007</u>	
GPU	up	14-00:00:0	4	alloc	gpu-[001-004]	
GPU	up	14-00:00:0	2	idle	gpu-[005-006]	
GPUV100	up	14-00:00:0	1	idle	gpu-005	
Devel	up	5-00:00:00	1	mix	compute-001	
tcloete@sl	urm-log	gin:~\$				

Primary Resources

- <u>http://docs.ilifu.ac.za/#/tech_docs/r</u> <u>esource_allocation</u>
- Primary resources
 - 1. CPU
 - 2. Memory
 - 3. Wall-time
- Notes
 - Nodes have 2 CPUs (sockets), each with 16 cores, all of which Slurm calls "CPUs"

Allocating Resources

- How to allocate resources
 - Accurately determine your resource requirements
 - Use what you require
- Effect
 - Avoid wasting resources (allocated but not used)
 - Increase resource availability
 - Allow other users' jobs to run
 - Improves efficiency of Slurm scheduler
 - Decreased job wait times
 - Better fairshare priority for future job submissions.

Determining resource requirements

- 1. Determine parallelism of software
- 2. Profiling previous similar jobs
- 3. Scaling up test jobs

Determining resource requirements

- Determining parallelism of software
 - Many software packages only use 1 CPU
 - CPU-level parallelism: Max 1 Node of CPUs
 - Task-level parallelism: >= 1 Node

Determining resource requirements

- Determining parallelism of software
 - Most parallel processing software doesn't scale linearly
 - Maximum performance often least efficient
 - i.e. shortest wall-time but large allocation necessary
 - Need to find middle ground
 - MPI jobs may perform worse for larger allocations (scatter/gather)
 - Most efficient generally to break into many small independent jobs
 - High-throughput approach

- Find job ID
 - Job id is shown when you submitted your job
 - Can search for historical jobs
 - Display jobs named 'my-job' submitted during particular time range:
 - sacct -X --name=my-job --starttime=YYYY-MM-DD --endtime=YYYY-MM-DD
 - Omit job name (or end time) to show all jobs
 - Once you have job ID, you can search for specific information about resource usage

- Memory usage
 - Find MaxRSS statistic
 - Maximum memory usage of a job (sampled every 20 seconds)
 - Display MaxRSS for job ID 123456 compared to requested memory
 - sacct -j 123456 --unit=G -o JobID, JobName, MaxRSS, ReqMem
 - Notes: 232 Gn = 232 GB per node; 7.25c = 7.25 GB per CPU
 - Once memory requirement determined
 - Schedule future jobs with ~10-20% buffer
 - Avoids out-of-memory (OOM) error
 - Avoid excessive usage of memory

tcloete@slurr)-o JobID,Job	n-login:~\$ s Name,MaxRSS	sacct -j 847 ,ReqMem	′197unit=G
JobID	JobName	MaxRSS	ReqMem
847197	selfcal_p+		232G
847197.batch	batch	213.77G	
847197.exte+	extern	0	

- CPU (and memory) usage
 - Determine used vs. allocated/requested
 - Show Slurm resource efficiency (seff) for job ID 123456
 - Shows % used vs. allocated (for memory, uses MaxRSS stat)
 - seff 123456
 - Can run this from Jupyter terminal (to determine resource selection)

e o o tcloete@compute-001: ~/demo/interactive_script 🛛 🕬	tcloete@compute-001: ~/demo/interactive_script 🔍 🕬			
tcloete@slurm-login:~\$ seff 847197	<pre>htcloete@slurm-login:~\$ seff 201280</pre>			
Job ID: 847197	Job ID: 201280			
Cluster: ilifu-slurm2021	Cluster: ilifu-slurm2021			
User/Group: jcollier/idia-group	User/Group: jcollier/idia-group			
State: COMPLETED (exit code 0)	State: COMPLETED (exit code 0)			
Nodes: 1	Nodes: 1			
Cores per node: 32	Cores per node: 32			
CPU Utilized: 1-15:22:40	CPU Utilized: 00:00:09			
CPU Efficiency: 71.93% of 2-06:44:48 core-walltime	CPU Efficiency: 1.17% of 00:12:48 core-walltime			
Job Wall-clock time: 01:42:39	Job Wall-clock time: 00:00:24			
Memory Utilized: 213.77 GB	Memory Utilized: 519.09 MB			
Memory Efficiency: 92.14% of 232.00 GB	Memory Efficiency: 0.22% of 232.00 GB			

- Wall-time usage
 - Accurate estimation improves Slurm scheduler efficiency and may reduce your job wait time
 - Show used vs. requested wall-time for job ID 123456
 - sacct -o jobID, jobName, Elapsed, TimeLimit
 - Once wall-time requirement determined
 - Schedule future jobs with ~20-30% buffer (avoids job timing out)
 - Avoid excessive wall-time
 - Contact <u>support@ilifu.ac.za</u> to see if we may increase your time limit

	tcloete@compute-(001: ~/demo/interact	ive_script 🔍 🔨	% 1				
tcloete@slur	n-login:~\$ s	sacct -j 838	3338 -o jobID,job	N				
ame,Elapsed,TimeLimit								
JobID	JobName	Elapsed	Timelimit					
838338	quick_tcl+	00:21:12	01:00:00					
838338.batch	batch	00:21:12						
838338.exte+	extern	00:21:12						

Scaling tests

- Accurately estimating wall-time difficult to do
- Profile previous similar jobs, or
- Run test / scaling jobs
 - Start small test job (e.g. small subset of data)
 - Test the wall-time
 - Reasonable to over-allocate when running scaling test
 - Or if under-estimate, and test small enough, doesn't matter if crashes
 - Repeat process to see how resource usage scales
 - as a function of input (e.g. data volume)
 - as a function of CPUs / tasks (if doing parallel processing)
 - By the end, should have good idea of scaling and efficient choice
 - Allow for buffer for future jobs

Scaling tests on running jobs

- Get MaxRSS for running job
 - sstat -j 123456 -o MaxRSS
 - Given in kB units. Divide by 1024² for GB
- Display real time stats on dashboard (top / htop)
 - For sbatch: First ssh into the login node using authentication forwarding. ssh -A <username>@slurm.ilifu.ac.za

It's required to have a job running on a worker node. You can then ssh into that worker node (e.g. node 102) ssh compute-102

- For Jupyter: can simply open a new terminal.
- Now Run: htop -u \$USER
- Can monitor real-time usage

Maximum Resources

- If using **all** CPUs or memory, node becomes fully allocated
 - Any remaining CPUs / memory unavailable to other jobs (incl. your own)

E.g. Typical worker node: 32 CPU and 232 GB RAM

Job Requesting:2 CPU and 232 GB RAM == Full Node30 CPU not accessible to other jobs

If possible to split into two smaller jobs, if they ran on different nodes then:

1 CPU and 116 GB 31 CPUs accessible

1 CPU and 116 GB 31 CPUs accessible

Account allocation

- Each ilifu project has a <u>Slurm account</u>
- Resource usage charged against account (affects <u>fairshare</u>)
- View your accounts:
 - shelp
- View your default account
 - sacctmgr show user \$USER
- Change default
 - sacctmgr modify user name=\${USER}
 set DefaultAccount=<account>
- Set account (after #SBATCH for sbatch jobs)

- --account=b05-pipelines-ag

Resource Allocation Guide

DEMO TIME!

Data Management Guidelines

- Hot off the press!
- https://docs.ilifu.ac.za/#/data/data_management

Best practices

- Don't run software / heavy processes / scp on the login node
 - Only submit jobs and run SLURM commands (sbatch, srun, squeue, etc)
 - Use transfer.ilifu.ac.za to transfer data (external/internal), not login node
- Before running a large job, identify the available resources
 - Use sinfo. Don't hog the cluster. Reduce your allocation if possible
 - Increase likelihood of jobs running with less memory and less walltime
- Use sbatch (srun / screen / tmux / mosh are volatile)
- Cleanup files that aren't needed
 - Old raw data, temporary products, /scratch data, etc
- Don't place large files in your home directory (/users)
- Use Singularity (you cannot install software on the nodes) full

Thank you!

Thanks to Jordan Collier for letting me use his Slides

Remember our support channels!

support@ilifu.ac.za https://docs.ilifu.ac.za

