
1

ilifu Online Training — Advanced 2 — Parallelism
Dane Kennedy

Bioinformatics support, ilifu

September 2024

• Login node (job submission & management)
– Where you land when you log in (also known as “head node”)

– Run SLURM commands/submit jobs, but not software/heavy processes

• Compute nodes
– Where your processes run (also known as “worker nodes”)

– Via modules /Singularity containers

SLURM
http://docs.ilifu.ac.za/#/getting_started/submit_job_slurm

…

1 node = 32 CPUs,
~240 GiB RAM

Login node

Jupyter

jupyter-001 jupyter-010…

Main

compute-001 compute-085…

http://docs.ilifu.ac.za/#/getting_started/submit_job_slurm

• Partitions (other than Jupyter) – see with ‘sinfo’:
– Main: 85 nodes (currently), each w/ 32 CPUs, 232 GB (usable) RAM

– HighMem: 2 nodes, w/ 32 CPUs, 503 GB (usable) RAM + 96 CPU 1.5 TB RAM

– GPU: 7 nodes (P100, V100,..), each w/ 24-48 CPUs, 232-354 GB (usable) RAM

SLURM
http://docs.ilifu.ac.za/#/tech_docs/running_jobs?id=_4-specifying-resources-when-running-jobs-
on-slurm

…

Login node

Main HighMem

compute-001
…highmem

-101
highmem
-102

GPU

gpu-001 gpu-007compute-085
……

http://docs.ilifu.ac.za/#/tech_docs/running_jobs?id=_4-specifying-resources-when-running-jobs-on-slurm
http://docs.ilifu.ac.za/#/tech_docs/running_jobs?id=_4-specifying-resources-when-running-jobs-on-slurm

• Oxford definition for parallel processing
– a mode of operation in which a process is split into parts, which are executed simultaneously on

different processors attached to the same computer [or different computers attached to the same
cluster].

– A cluster includes many connected nodes, each with its own RAM & CPUs

– A node = single computer / server / VM / machine / box

• The work is partitioned into smaller jobs, sometimes with a partition of the dataset

Parallelism

• Set of discrete instructions

• Carried out sequentially

• Example: print average grade of a class

1. total = 0

2. for grade in grades:
 total = total + grade

3. average = total / number_of_grades

4. print(average)

What is a program?

• Partition grades into n sets and do the following:

• Combine results

Parallel execution of a program

average = (average_1 + … + average_n)
 number_of_partitions

1. total = 0
2. for grade in 1/n

grades:

total = total + grade

1. average_1 = total /
number_of_grades

…

1. total = 0
2. for grade in 1/n

grades:

total = total + grade

1. average_n = total /
number_of_grades

• Executing portions of program simultaneously

• Possible when we have many processors (cores/CPUs)

• Capacity dependent on structure of both hardware AND software

• Requires overall control/coordination mechanism
– i.e. message passing in MPI / threading / OpenMP

Parallelism

• A cluster includes many connected nodes

• Each node has RAM and multiple cores

• Some nodes have GPUs

• Work of job is partitioned into smaller jobs

• Sometimes with a partition of the data

Parallelism on the ilifu cluster

• Can be achieved on a single machine / node
– Distributes work over many CPUs

– Typically implemented using threads / OpenMP

– GPU

• Or over multiple machines / nodes
– Distributes work over many tasks, over 1+ nodes

– Each given amount of memory to use

– Generally requires a cluster

– Requires a message passing interface (MPI) wrapper

• mpirun, srun (SLURM), mpicasa (CASA 5)

• Version of wrapper outside and inside container / venv must match

• Hybrid parallelism? (MPI + OpenMP / MPI + GPU / …)

• Managed on ilifu by SLURM

Parallelism

• Implementing a normal job in SLURM
– Will only use 1 CPU, 1 task, and 1 node

– Default for many processes

• Implementing a threading / OpenMP job in SLURM
– Need to use >1 CPU, while nodes & tasks must be 1 (unless also using MPI)

• cpus-per-task (not inherited from #SBATCH)
• May need to export OMP_NUM_THREADS

• Implementing an MPI job in SLURM
– Need to use >1 task, while nodes and CPUs can be 1

• nodes, ntasks-per-node, cpus-per-task

• Best to wrap singularity in MPI call

• Cannot exceed 32 CPUs (or tasks) per node

Parallelism

--nodes= # the number of nodes allocated to job

--tasks-per-node= # number of tasks per node

--cpus-per-task= # number of cpus per task

--mem-per-cpu= # memory per cpu

--mem= # memory per node

--ntasks-per-node= # number of tasks per node

SLURM parameters
https://docs.ilifu.ac.za/#/getting_started/submit_job_slurm?id=customising-your-job-us
ing-sbatchsrun-parameters

https://docs.ilifu.ac.za/#/getting_started/submit_job_slurm?id=customising-your-job-using-sbatchsrun-parameters
https://docs.ilifu.ac.za/#/getting_started/submit_job_slurm?id=customising-your-job-using-sbatchsrun-parameters

• If code is serial, i.e. doesn’t use OpenMP or MPI, increasing CPUs or
nodes will not decrease execution time

• Using multiple CPUs within a node with OpenMP, where N is an
optional number of CPUs (utilised by myscript.py)

• Note: The maximum number of CPUs per node (32) will not always
give the maximum speedup

SLURM – serial and multi-CPU jobs

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=1

python myscript.py

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=N

#SBATCH --mem-per-cpu=XGB

python myscript.py

• Can also specify tasks or tasks per node

• Above example doesn’t require knowledge of number of node’s
CPUs; below one does

SLURM – multi-task and multi-node jobs

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=N

#SBATCH --cpus-per-task=1

#SBATCH --mem=XGB

module add openmpi

mpirun python myscript.py

#SBATCH --ntasks=N

#SBATCH --cpus-per-task=1

#SBATCH --mem=XGB

module add openmpi

mpirun python myscript.py

• Using multiple nodes with MPI

• Note: Need to consider that internode communication is slower than intranode
communication

• --mem is memory per node, so N times XGB allocated overall (usable by some
software)

• Using multiple nodes with MPI as well as multiple cores within node with OpenMP
(utilised by myscript.py)

SLURM – multi-task and multi-CPU jobs

#SBATCH --nodes=N

#SBATCH --ntasks-per-node=n

#SBATCH --cpus-per-task=1

#SBATCH --mem=XGB

module add openmpi

mpirun python myscript.py

#SBATCH --ntasks=N

#SBATCH --cpus-per-task=n

module add openmpi

mpirun python myscript.py

https://github.com/ilifu/ilifu_user_training/tree/main/advanced2/tutorial1

Demo time

https://github.com/ilifu/ilifu_user_training/tree/main/advanced2/tutorial1

• Don’t run software / heavy processes / scp on the login node
– Only submit jobs and run SLURM commands (sbatch, srun, squeue, etc)

– Use transfer.ilifu.ac.za to transfer data (external/internal), not login node

• Before running a large job, identify the available resources
– Use sinfo. Don’t hog the cluster. Reduce your allocation if possible

– Increase likelihood of jobs running with less memory and less walltime

• Use sbatch (srun / screen / tmux / mosh are volatile)

• Cleanup files that aren’t needed
– Old raw data, temporary products, /scratch data, etc

• Don’t place large files in your home directory (/users)

• Use Singularity (you cannot install software on the nodes)

Best practices

THANK
YOU

Acknowledgements

Dr Jordan Collier for the slides

Jeremy, Tinus and Mike for all your help

